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The figures show that the solid curves are in excellent
agreement with the measurements. However, the losses
of 0.5 dB and 0.7 dB oceurring at resonance for § = 75°
in Figs. 6 and 7, respectively, are larger than those pre-
dicted by the theory (less than 0.1 dB). The difference is
attributed to ohmic losses in the grids which were neg-
lected in the theory.
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Short Paperq

Reduction of the Attenuation Constant of Microstrip

1. J. ALBREY anp M. W. GUNN

Abstract—Modifications to a normal microstrip transmission line
are proposed, with the aim of reducing the attenuation constant of
the line. The results of a computer analysis of a structure containing
multilayers of dielectric show that significant reductions in attenua-
tion appear possible.

INTRODUCTION

The advent of solid-state microwave devices has given great
impetus to the development of microwave integrated circuits, which
are based on a microstrip structure consisting of conducting strips
separated from a ground plane by a substrate material with a high
dielectric constant. Methods for the calculation of characteristic
impedance, capacitance, and wavelength of such structures were
established in the 1950’s [17], but the first accurate calculations did
not appear until the 1960’s [2]. This two-conductor structure can
be effectively shielded by enclosure in an appropriately large metal
container, but as pointed out by Brenner [37, such transmission
lines are beset with problems of inhomogeneity of the substrate,
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narrow strip widths for typical characteristic impedance levels (up
to say 150 @), and high attenuation. The suspended substrate trans-
mission line, which largely overcomes such difficulties, has thus be-
come popular.

This short paper reports some results of an investigation into
possible methods of reducing the attenuation of microstrip. It is
proposed that the attenuation constant of a normal suspended
substrate transmission line can be reduced by removing the sub-
strate from the immediate vicinity of the conducting strip. The
investigation was prompted by work on the use of loading in the
form of a “shell” of dielectric to reduce the attenuation of a coaxial
cable [4].

Such a modified structure would have the general form shown in
Fig. 1 where dielectric e2* is to be regarded as the substrate material
that was originally in contact with the center conducting strip, but
has now been removed a finite distance from the strip. The other
regions consist of low-loss low dielectric constant material (a* and
e* are air), and e* supports the center strip.

METHOD OF ANALYSIS

This multilayered structure has been analyzed on the assumption
that a TEM field pattern exists. For this to be valid, the wavelength
must be much greater than the transverse dimensions of the line,
and so a frequency of 1 GHz (A, equals wavelength in air-filled
line = 30 cm) is chosen. Several methods of analysis are available,
the variational approach [57] being chosen because of its direct
nature and its accuracy, particularly in the calculation of attenua-
tion. The method is based on a variational technique using Green’s
functions and considers the center conductor to be infinitely thin.
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TABLE I
ArrENTATION CONSTANTS FOR MICROSTRIP LINE OF Fig. 12

(24
HIGH PERMITTIVITY SUBSTRATE ? €2 w (mm) )\/)\0 N/m dB/}\
by
*
i 6.10 0.743 0.480 0.114 = 0.143
9.35 0.496 0.400 0.152 0.159
0 - N ="l 11.00 0.422 0.363 0.175 0.166
Fig. 1. Strip.transmission line containing four dielectric ‘layers. Bh1=0 = hs h: = 0.5 mm, and Z, = 50 Q.
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' Fig. 2. Attenuation versus position of substrate for a fixed substrate thickness of the sti‘ucéaure of Fig. 1 (b2 = 0.5 mm,
= ).

he = 1.84 mm, &; = 1.0, tan 8z = 0.0, tand: = 2X 1074, Z; .=

Such an approach requires an estimaté of the functional form of the
charge distribution on the strip, this being taken in the form of a
cubic function of z (Fig. 1) in the present analysis. Alternatively,
one could use the method of images [6]; but it was considered that
, this method would result in equations that would be difficult to

handle for this particular situation. The relaxation technique [7 ]
could be used; but this does not appear to be sufficiently accurate
for attenuation calculations. Also, the finite-difference method used
by Brenner [3] may suffer the same disadvantage. )

Referring again to Fig. 1, the following parameters are used in this
investigation. )

Substraté: e, = 6.1 or 9.35 or 11.0; tan 5, = 2 X 10~

Support: &3 = 1.0, tand; = 0.0 (air); or e; = 1.03, tans; =
3 X 1075 (polystyrene foam),

Conductors: Conductivity equals 5.8 X 107 S/m. The center strip
is infinitely thin.

In order to provide a basis for comparison, it is appropriate that
the attenuation for normal shielded microstrip be calculated, that
is, the strip is on top of the high dielectiic constant substrate, which,
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in turn, is on the bottom of the box (hy = 0 = k). In practice, sub-
strate thicknesses are available in only a few fixed values, which
typically lie in the range 0.25-0.625 mm (0.010-0.025 in). For our
purposes, the substrate thickness (k) was chesen as 0.5 mm (0.020
in) and the strip width (w) was computed to give the characteristic
impedance Z, = 50 Q@ for each of the three values of ¢,;. The attenua~
tion of the lines may then be calculated, and the results are shown in
Table 1.

Consider now the modified suspended subsfrate line. A reasonable
value for ks is about 0.4b [3], where b is the height of the box, that
is, hy = 1.84 mm in this case. For a given position of the substrate,
that is, for a given value of ks, we may select k, and calculate w to
give Zy = 50 Q. In either case, once h; is determined,  is also known.
The limit of this procedure obviously occurs when h, becomes 0.

For the case of a fixed substrate thickness of ks = 0.5 mm and
varying w as required to give Z, = 50 Q, the attenuation for several
values of h; for each of the three values of ¢, was calculated: The
results are shown in Fig. 2. Of particular interest here is a comparison
between the attenuation of the conventional microstrip line (Table
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Fig. 3. Attenuation versus position of substrate for a variable substrate
thickness of the structure of Fig. 2 (w = 4.6 mm, h; = 1.84 mm,
&3 = 1.0, tan é; = 0.0, tan §: = 2.1074, Z, = 50 Q).

I) and the suspended substrate line (h; = 0.0 in Fig. 2) for the same
values of substrate thickness (0.5 mm). For ¢y = 9.35, we find an
attenuation of 0.159 dB/A in Table I as compared with the corre-
sponding figure of 0.041 dB/X in Fig. 2. Clearly, a large reduction
(approximately 75 percent) in attenuation is achieved by using the
suspended substrate configuration. Fig. 2 shows that this can be
further improved upon by removing the substrate from the immedi-
ate vicinity of the center conductor.

For the alternative approach, w was kept fixed at 4.6 mm and h,
varied as required to give Z, = 50 Q. This procedure was carried out
for several values of ks and the results are shown in Fig. 3. It should
be noted that the results presented in Figs. 2 and 3 are for air as the
support for the strip, which is obviously a physically unreal situation.
However, calculations with polystyrene foam as the support showed
that the attenuation of the structure was increased by less than
2 percent of the values shown in Figs. 2 and 3.

DISCUSSION

Comparison of Table I and Fig. 2 shows the significant reduction
in attenuation obtained by suspending the substrate. In absolute
attenuation figures with a substrate dielectric constant ¢ = 11.0,
the attenuation of the normal microstrip structure is 0.175 N/m
compared with the suspended substrate figure of 0.0212 N/m. With
the proposed structure, the attenuation has been lowered further
by removing the substrate from the immediate vicinity of the center
conductor. As ks is increased, the attenuation passes through a
minimum, as shown in Fig. 3. A more detailed plot of the relevant
region in Fig. 2 would reveal a similar behavior.

In order to study the effects of moving the substrate on the losses
in the various sections of the structure in Fig. 1, it is necessary that
the total power transmitted be the same in all cases. Because every
line studied has the same characteristic impedance, this means that
the current in every line remains the same. This, in turn, requires
the evaluation of a constant multiplier in each case for the functional
form of the charge distribution used in the analysis. The value of this
multiplier varies from structure to structure and depends on the
product of the total charge on the strip and the phase velocity.

Without entering into great detail, this investigation has revealed
that the major cause of loss in the line is the interface between the
center conductor and the substrate. This loss typically accounts for
80 percent of the total loss and is reduced by up to 60 percent for the
cases studied with only a small movement of the substrate, thereafter
decreasing at a very much lower rate as ks increases. As the substrate
is moved further from the strip, its influence on the fields around the
strip decreases, resulting in a small increase in the losses in the top
of the strip and the top of the box. Also, there is an increase in the
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TABLE II
ArtENUATION CONSTANTS FOR MicrosTRIP LINE oF Fig, 1»

o
€2 hs (mm) A Ao N/m dB/A
6.1 0.25 0.920 0.0134 0.0321
0.125 0.953 0.0121 0.0302
9.35 0.25 0.880 0.0154 0.0354
0.125 — — —_
11.0 0.25 0.873 0.0165 0.0376
0.125 0.928 0.0136 0.0330

8hs=0, hy = 1.84 mm, and Z, = 50 Q.

losses in the bottom of the box as the substrate: approaches that
surface. The overall result is a small increase in losses as by approaches
0, which results in a small increase in attenuation of the line. It
should be noted that the losses in the sidewalls and the dielectric
losses account for only a small fraction of the total and simply
decrease for increasing h;. They are therefore not of any great sig-
nificance in this discussion. Calculation of the attenuation constant
from the expression o = Pr/2Py, where Py, is the average power
loss per unit length and Pr the average power transfer in the direc-
tion of propagation at any point, thus shows a reduced attenuation
figure for the line.

A similar behavior occurs in the transmission lines used for the
results of Fig. 3. As has been pointed out, these lines have a fixed
value for w of 4.6 mm, which is smaller than any of the strip widths
of the transmission lines used for the results of Fig. 2. The minimum
attenuation obtained by this procedure for a given e, is greater than
that found in the former approach. This is due primarily to the fact
that before the losses in the bottom of the strip have been reduced
by as great a proportion as in the first method, the bottom surface
of the substrate is in close proximity to the bottom of the box with
consequent increasing losses in this conductor surface. Also due to the
thicker substrate, the field strength in the upper section of the line
is reduced with consequent reduced losses in the top of the strip and
top of the box. Again, the dielectric losses and losses in the sidewalls
are only a small fraction of the total. The overall result is that, for
given values of . and hs, a smaller total loss and hence a reduced
attenuation is obtained.

Referring to the first method of approach, two other substrate
thicknesses were chosen, and the attenuation figures for each thick-
ness—permittivity combination are shown in Table II. These figures
are for the conventional suspended substrate structure.

It is clearly seen that the attenuation decreases with decreasing
permittivity and thickness of the substrate. In the limiting case
where the line is completely air filled, the attenuation is 0.028 dB/A
(0.0107 N/m). For each of these two new thicknesses, the same
procedure of moving the substrate and adjusting the strip width was
carried out. As in the previous case, a reduced attenuation was
obtained. However, the minimum attenuation found for any given
value of substrate thickness and permittivity was approximately
0.028 dB/x (0.0107 N/m), that is, the attenuation of an air-filled
line.

CONCLUSION

It has been shown that the attenuation per wavelength of a
suspended substrate microstrip transmission line is about one-
quarter that of normal microstrip line and that this attenuation can
be further reduced by removing the substrate from the immediate
vicinity of the center strip. A reduction factor of one-half is readily
obtainable. It has further been shown that the attenuation of the
proposed multilayer structure can be made to be very close to that
of an air-filled line which, in turn, appears to have the lowest possible
attenuation.

Clearly, the results presented here are limited and the conclusions
drawn from them depend on the validity of the theoretical assump-
tions [5]. Of particular concern is the assumed charge distribution
on the center strip. All that is known about this is that it is much
larger at the edges of the strip than at the center. This type of
behavior has been observed experimentally by Dukes [8], and
hence a cubic function seems a reasonable assumption. Obviously,
there is no guarantee that such’ a representation is correct for all
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cases studied here, but a large amount of computation would be
required in order to determine the best functional representation
for every structure. However, it appears that the proposals put
forward here could lead to a new form of shielded suspended sub-
strate microstrip line. For situations where several circuits are
etched upon the one substrate, high-permittivity substrate materials
are required to isolate these circuits, and the multilayer structure
proposed provides a means of reducing the losses introduced by such
materials. Further work is in hand to define the effects on the electric
field distribution of moving the substrate and to find an optimum
structure.
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Waves Guided Between Open Parallel Concave Reflectors

¥. J. TISCHER, rELLOW, IEEE, AND J. R. POTUKUCHI

Abstract—Wave propagation between two open parallel concave
reflectors is usually considered by a wave-beam or a multiple-
reflection approach. It is shown that the field distribution in elliptic
waveguides, for specific wave modes, approaches that in open re-
flector waveguides.

INTRODUCTION

A structure composed of two parallel cylindrical reflectors, as
illustrated in Fig. 1, has attractive characteristics as a waveguide,
particularly in the millimeter-wave region. Three methods for the
analysis of such reflector waveguides are described in the literature.
One is based on a deseription of the field distribution by transverse
wave beams [1]-[3]; another one [4], [5] uses Huygen’s principle
applied to the iterative radiation from and reflection by the reflector
surfaces. The third method [67, [7] analyzes the case as a boundary
value problem by taking into consideration diffraction at the open-
ings. In this analysis, the wave equation is being transformed into
a parabolic partial differential equation. The use of these reported
methods involves restrictions such as the limitation to confocal
reflectors [11-[6] and restrictions to specific ratios of cross-sectional
dimensions associated with the choice of elliptic coordinates [67].

In the present short paper, it is shown that the wave propagation
in open waveguides with concave reflectors also can be deseribed
by that in a waveguide with elliptic cross section. The analysis
indicates that for large and transverse wavenumbers the field dis-
tribution in the closed elliptical waveguide approaches that of the
open reflector-type waveguide. In contrast to the previously re-
ported approaches, the new method does not require implementa-
tion of any of the above-mentioned restrictions.’

Manuscript received November 19, 1973; revised January 21, 1974.
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1 A similar approach has been followed by Toraldo di Francia [11] in
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Fig. 1. Reflector guide.

BASIC RELATIONSHIPS

In this section the basic relationships for the field distribution in
the elliptic waveguide are outlined. For large values of the param-
eter ¢, the equations then also describe the field distributions in the
open waveguide with concave reflectors.

The transmission characteristics of elliptic waveguides have been
studied by several investigators [8], [9]. An elliptic coordinate
system is usually used in the analysis, as indicated in Fig. 2. The
distributions of the various field components are found by solving
the transverse wave equation for the longitudinal field components
E, and H, in this coordinate system. Assuming harmonic time
variations and wave propagation in the positive z direction (along
the cylinder axis), the wave equations have the basic form

* I

o +— or + 2¢(cosh 2& — cos 29)y = (1)
where ¢ = E, for TM modes and ¢ = H, for TE modes. Other
parameters are

q = k2c/4;

k2 = o’euo — k2;

2¢  focal distance;

k. propagation constant in z direction;

k. propagation constant in transverse direction (also propagation
constant for cutoff).

The basic solution of (1) is found by separation of variables and
becomes, in customary writing,

‘#m,n = 2 z Am,ncem(QIn,ng)cem(qm,nn) (23’)
m=0 n=0
for even-field modes, and
\bm,n = g § Bm.nsem<qrn,n$)sem(q:n.n"l) (2b)
m=1 n=1

for odd-field modes.

The functions ce,, and se,, are the even and odd Mathieu functions
of order m, and Ce,, and Se., are the corresponding modified Mathieu
functions. The order number m indicates the number of zeros of
the Mathieu funections between » = 0 and n = =/2. In the present
case, the functions with the order numbers m and n then represent
the distributions of E, and H,, respectively, for the various wave
modes. Evaluation of the Mathieu functions shows that for large
values of ¢ and k, the functions Se,, and Ce,, are highly quasi-periodie.
The number of zeros increases with increasing vaiues of ¢. The
functions, in the present case, represent the standing waves result-
ing from reflections between the upper and lower parts of the elliptic
waveguide, shown in Fig. 2, along the ¥ axis. Considering the field
distribution in direction of 4 (X direction), it is described by ce,
and sen. For the fundamental mode designated by m = 0, the
function ces has no periodicities and zeros, and it increases mono-
tonically when » varies between 0 and /2. Typical examples of
these functions are illustrated in Fig. 3 for various values of the
parameter ¢. The curves indicate that for large values of ¢ the
magnitude of ce is large in the vicinity of n = #/2 and becomes
negligibly small near » = 0. This means that the field distributions



